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Abstract. The paper addresses problems of allocating continuously divisible resources among mul-
tiple production activities. The resources are allowed to be doubly constrained, so that both usage
at every point of time and cumulative consumption over a planning horizon are limited as it is often
the case in project and production scheduling. The objective is to track changing in time demands
for the activities as closely as possible. We propose a general continuous-time model that states the
problem in a form of the optimal control problem with non-linear speed-resource usage functions.
With the aid of the maximum principle, properties of the solutions are derived to characterize optimal
resource usage policies. On the basis of this analytical investigation, numerical scheduling methods
are suggested and computationally studied.
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1. Introduction

Significant work has been done to advance scheduling theory and its application
to diverse industrial, management, service and other real-life systems and more is
likely to come due to both great influence of scheduling solutions on the function-
ing of those systems and ‘hardness’ of the scheduling problems themselves. The
state-of-the-art of scheduling theory and its applications can be found in recent
literature (see, for example, Blazewicz et al. 1996, Gershwin 1994 and Pinedo
1995) which covers various scheduling approaches and environments. In particular,
Blazewicz et al. (1996) stress importance and usefulness of considering continu-
ously devisable resources in problems of scheduling constrained resources. They
discuss some special cases of these problems which are solved optimally and sug-
gest heuristic approaches for solving general problem formulations approximately.
This is typically accomplished by reducing the original dynamic problem to a
number of static convex programming problems.

In contrast to the described approach, this work addresses the continuous-time,
optimal control model which allows the problem to be solved in its dynamic for-
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mulation. The formulation incorporates most important and common features of
the modern production and project scheduling in a general scheduling model. The
generalization concerns integration of the following major scheduling issues:
· two types of resource constraints;
· nonlinearity of resource utilization;
· nonlinear objective of tracking changing demands.

To detail the generalization, we start our discussion from the production scheduling
related extensions.

Following the current literature on the continuous-time production scheduling
or, more exactly, on the production flow control in a flexible manufacturing sys-
tem, the inventoryXi(t) flow of product-typei(i = 1,2, . . . , I ) is traditionally
presented as the difference between the system production rateui(t) for producti
at momentt and demand ratedi(t) for this product at the moment:

Ẋi(t) = ui(t)− di(t),Xi(0) = X0
i , (1)

whereX0
i is the given initial inventory level of product typei.

A generalization to be discussed in the present paper is modeling of the sys-
tem production rateui(t) as a given function of the resource required to produce
producti (speed-resource function), i.e., we introduce the production flow as:

Ẋi(t) = fi(ri(t))− di(t),Xi(0) = X0
i , (2)

where the resource usageri(t) is a bounded control variable,

06 ri(t) 6 bi . (3)

Clearly, that the equation (1) is a special case of the equation (2). The increasing
continuous functionfi(ri(t)), fi(0) = 0 describes a real-life situation when the
production rate of a system is not necessarily linearly dependent on the resource
usage as it was in equation (1).

Another generalization related to production flow control concerns utilization
of the resources. No matter the nature of the speed-resource functions, whether
linear as stated in equation (1) or non-linear as allowed in equation (2), in industry,
the resources are often doubly constrained as it is the case in project management.
Typical examples of such resources are money and energy which are usually treated
as non-renewable resources, while in practice they are doubly constrained due to
restrictions on their current usage rate. At the same time, manpower cannot be al-
ways treated as a renewable resource, because the number of man-hours consumed
is also often restricted. Therefore, we present the following two types of resource
constraints: renewable and non-renewable. These affect differently the extremal
behavior of the system in both linear and nonlinear cases of the resource usage and
consumption as it will be discussed in the sequel.

The renewability of the resource atevery pointin time is constrained as follows:∑
i

ri(t) 6 N(t), (4)
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whereN(t) is the maximal level of theresources usageat timet . We will assume
thatN(t) is greater than each specific boundbi , i.e., bi < N(t)(∀i, and is less
than the sum of these bounds,

∑
i bi > N(t). Since constraint (4) refers to each

point in time separately and does not involve the preceding resource utilization, the
resources it constrains, are commonly called renewable. However, the resources are
allowed to be non-renewable in the sense that the maximum cumulative amount of
the resource consumed up to timet is predetermined and fixed.

The non-renewability of the resources is imposed by the maximal cumulative
resource consumptionM(t) from the beginning of the planning horizon through
momentt :∑

i

∫ t

0
ri(s)ds 6 M(t) . (5)

These are the generalizations concerning the dynamic scheduling models sug-
gested so far for production flow control in flexible manufacturing environment
(Kimemia and Gershwin 1983, Khmelnitsky and Kogan 1994, Khmelnitsky, Kogan
and Maimon 1995, Kogan and Khmelnitsky 1996).

On the other hand, the project scheduling continuous-time models are
traditionally concerned with diverse resources including doubly constrained as
well as speed-resource usage functions (for example, Weglarz 1981, Janiak and
Stankiewicz 1983, Leachman et al. 1990). However, these continuous-time dy-
namic models do not account explicitly for due dates, especially when the due
dates take the most general, dynamic form introduced in equation (2).

Thus, the generalization related to the project scheduling concerns the sys-
tem dynamics and the objective function. Namely, in place of the equation of the
cumulative state of project activityi (Weglarz 1981):

Ẋi(t) = fi(ri(t)) ,
the current state equation (2) is utilized. Furthermore, instead of the typical re-
duction of the objective to minimizing the project durations, we utilize a general
objective for both project and production scheduling. This objective is to track the
dynamic demands as closely as possible:∫ T

0

∑
i

C(Xi(t))dt → min , (6)

whereT is the planning horizon andC(Xi(t)) = 1/2ci [Xi(t)]2 is a convex cost
function traditionally chosen quadratic to clarify the presentation. When there are
surpluses (overproduction)Xi(t) > 0 in the system, this function reflects inventory
holding cost, while it is backlogging cost in the case of shortages (underproduc-
tion).

Thus, model (2)–(6) incorporates diverse features significant for both produc-
tion and project scheduling and, hence, applicable to a wide range of scheduling
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problems. Moreover, when a demand for products is given as an amount of every
product required per time unit along the planning horizon, this model presents a
general case of the dynamic lot-sizing in manufacturing systems and preemptive
project activities scheduling in project management.

However, if the demand is not dynamic, that is, they are given only at one point
(i.e., at a due date) of the planning horizon and they require only a single job
(or normalized activity with work content equal to one) to be carried out at that
point, then the model presents classic preemptive job (activity) scheduling with the
objective to minimize total dynamic lateness and tardiness.

2. Canonical statements of the problem

Optimal control theory has been successfully applied to various production control
and planning problems when dealing with only renewable resources which usage
is characterized by linear speed-resource functions (Sethi et al. 1992, Bergstrom
and Smith 1970, Khmelnitsky and Kogan 1996).

In order to apply the optimal control to the problem (2)–(6) and develop a
general solution approach, the problem is stated in a canonical form. The behavior
of the state variablesXi(t) has to be presented by differential equations with right-
hand side functions being differentiable with respect to the controlri(t) and state
Xi(t) variables. The constraints on the state and control variables are to be de-
scribed by algebraic equalities (inequalities) also differentiable inri(t) andXi(t).
Evidently, the constraint (5) is not canonical due to its integral form, and function
fi(ri(t)) is not necessarily differentiable. Therefore, we first assume this function
to be differentiable or approximated by a differentiable function with respect to
ri(t).

To convert the non-canonical constraint (5), we introduce a new state variable
Y (t) which is a cumulative amount of the resource consumed by timet . Then, the
resource consumption is described as follows:

Ẏ (t) =
∑
i

ri(t), Y (0) = Y 0 , (7)

where, similar to the initial inventory levelX0
i in the system (see (2)),Y 0 defines

initial state of the resource consumed by the beginning of the planning horizon.
Consequently, constraint (5) now readily transforms into a canonical one:

Y (t) 6 M(t) . (8)

Since the problem (2)–(4), (6)–(8) is canonical, the maximum principle can
be applied to study the properties of the optimal solutions and develop a time-
decomposition solution algorithm (Ilyutovich and Khmelnitsky 1991, Hartl, Sethi
and Vickson 1995). However, the state constraints, for example, constraint (8), are
well known to be the cause of a substantial computational burden for any time-
decomposition procedure. Therefore, we relax the constraint (8) by replacing it
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with the same constraint, but valid only by the end of the planning horizon. This is
a quite common manufacturing practice: to restrict the total nonrenewable resource
consumption, while renewable resources are limited at each point of time,

Y (T ) 6M(T ) . (9)

3. Properties of optimal solutions for the linear speed-resource function

Given problem (2)–(4), (6), (7) and (9), the maximal principle applied to the prob-
lem, states (Bryson and Ho 1975, Dubovitsky and Milyutin 1981) that if a trajec-
tory (Xi(t), Y (t), ri(t)) is optimal, then there exist piecewise continuous functions
(dual variables)

· the dual differential equations and transversality conditions hold

ψ̇X
i (t) = ciXi(t), ψX

i (T ) = 0 (10)

ψ̇Y (t) = 0, ψY (T ) 6 0; (11)

· the HamiltonianH is maximized for eacht by the controlsri(t):

H =− 1

2

∑
i

ci[Xi(t)]2+
∑
i

ψX
i (t)[fi(ri(t))− di(t)]

+ ψY (t)
∑
i

ri(t)→ max . (12)

subject to constraints (3) and (4).
· the local maximum principle holds

∂H

∂ri(t)
= ψX

i (t)
∂fi(ri(t))

∂ri(t)
+ ψY (t) = 0 . (13)

Since the dual variableψY (t) is a non-positive constant (see (11)), the argument
t can be further omitted.

From the dual problem (10)–(12), it follows that there are two major options to
search for an optimal solution. One is to optimize the Hamiltonian with respect to
the control variables and control constraints analytically as the maximum principle
(12) states. Based on the obtained optimal properties, the solution to the original
problem can then be reduced to a procedure of global optimization search with
respect to initial values of the dual variables. Specifically, for each set of the initial
values ofψX

i (0) andψY , the trajectory is built uniquely by integrating the primal
(2), (7) and dual (10) equations from the left to the right. Consequently, the objec-
tive (6) becomes a function of these initial values. This methodological option is
possible if a specific form of the speed-resource function is selected to be studied.
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The other option is not directly related to a specific form of the speed-resource
functions and, therefore, can be exploited in a general form. It is accomplished
by optimizing the Hamiltonian numerically based only on the local maximum
principle (13). Such an approach commonly leads to the projected-gradient based
solution procedures.

Both described options are attended in the paper as time-decomposition meth-
ods because they are based on the Hamiltonian maximization at every point of time.
The speed-resource functions, which enter the Hamiltonian - the dual problem
objective, are to be further constrained to have only concave or linear forms. This
ensures the unimodality of the dual problem so that its global optimum can be
found by standard analytical and numerical tools.

We start first from the analytical option. Since the study of the optimal regimes
requires a specific form of the speed-resource functions to be selected, the fol-
lowing linearfi(ri(t)) = kiri(t) and concavefi(ri(t)) = ki

√
ri(t) functions are

further chosen to illustrate the first solution methodology.

LEMMA 1 (necessary optimality conditions).Given problem (2)–(4), (6), (7) and
(9),fi(ri(t)) = kiri(t),Gi(t) = kiψX

i (t)+ψY ; optimal controlri(t) in the problem
is necessarily defined as follows:
· ri(t) = 0, if Gi(t) < 0, ∀i (no-resource usage regime);
· ri(t) = bi, if Gi(t) > 0 and

∑
i′|Gi′>Gi bi′ 6 N(t); ri(t) = N(t) −∑

i′|Gi′>Gi bi′ if Gi(t) > 0 and
∑

i′|Gi′>Gi bi′ < N(t) 6
∑

i′|Gi′>Gi bi′
(greedy resource usage regime);
· ri(t) ∈ [0, bi ], if Gi(t) = 0 and

∑
i′|Gi′>Gi bi′ < N(t) (first singular regime);

· ri(t) ∈ [0, bi ], ri′(t) ∈ [0, bi′ ], if Gi(t) = G)i′(t),
∑

i′′|Gi′′>Gi bi′′ < N(t)

and
∑

i′′|Gi′′>Gi bi′′ > N(t) (second singular regime);

Proof.According to the maximum principle, the control-dependent term of the
Hamiltonian

H =
∑
i

ψX
i (t)kiri(t)+ ψY

∑
i

ri(t) (14)

must be maximized at each time with respect to the control constraints. Taking into
account that this term is linear inri(t) as well as the linearity of constraints (3)
and (4), one can readily observe that the maximum is achieved in one of the cases
stated in the lemma and it is illustrated in Figure 1 for the two-product system case.

Specifically, when coordinates of the Hamiltonian gradient

∂H

∂ri(t)
= Gi(t) = kiψX

i (t)+ ψY

are positive and not equal to one another,G1(t) > G2(t) (greedy resource usage
regime), the first resource is to be utilized as much as just possible, i.e.,r1(t) = b1,
while the second one contents with the remaining capacity,r2(t) = b2, if b1+b2 6

N(t) andr2(t) = N(t)− b1 otherwise.
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Figure 1. Optimal regimes: linear speed-resource function case.

In the same Figure, the two cases where the optimal controls are uncertain
(singular regimes), are presented by the gradient vector perpendicular to either one
of the axis or to the edge formed by the control constraintr1(t)+ r2(t) 6 N(t). 2

Note, that unlike the regular no-resource usage and greedy resource usage regimes
where the optimal controls are uniquely defined, the singular regimes possess un-
determined controls. The following Lemmas resolve the ambiguity for the singular
cases determined in Lemma 1.

LEMMA 2. Given the singular regime condition for a producti:

Gi(t) = 0 (15)

satisfied on an interval of time; the optimal control value on the interval for this
singular regime is defined as follows:

ri(t) = di(t)

ki
. (16)

Proof. By differentiating twice the condition (15) and taking into account the
primal and dual differential equation (2) and (10) immediately result in equation
(16). 2

Note, to support the singular regime on an interval of time, the resource usage
must follow the demand, as stated in the Lemma, and therefore it can only occur
when the correspondent buffer is emptyXi(t) = 0 and demand is less than the
operating capacitydi(t) 6 biki.

LEMMA 3. Given the singular regime conditions for a set of productsI ′, |I ′| = n:

Gi(t) = Gi′(t), i, i
′ ∈ I ′,

∑
i′′|Gi′′>Gi

bi′′ < N(t) and
∑

i′′|Gi′′>Gi
bi′′ > N(t) (17)
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satisfied on an interval of time; the optimal control values on the interval of this
singular regime are defined from the system of the linear algebraic equations:

kici(kiri(t)− di(t)) = ki′ci′(ki′ri′(t)− di′(t)), i, i′ ∈ I ′ ;∑
i∈I ′

ri(t)+
∑

i′′|Gi′′>Gi
bi′′ = N(t) (18)

Proof. By differentiating twice the condition (17) and taking into account the
primal and dual differential equation (2) and (10), we findn−1 algebraic equations:

kici(kiri(t)− di(t)) = ki′ci′(ki′ri′(t)− di′(t)) .
The lemma’s last equation is the resource usage equation, which complements the
system ofn = |I ′| relations forn unknown parameters of control. 2

COROLLARY. If, on an interval of time, the singular regime (17) is realized,
either of the following conditions holds:

06 kicidi(t)− ki′ci′di′(t) 6 cik2
i bi , i, i′ ∈ I ′

ci′′k
2
i′bi′ 6 kicidi(t)− ki′ci′di′(t) 6 0, i, i′ ∈ I ′ (19)

Proof. The condition immediately follows from the condition (18) and control
constraint (3). 2

The studied optimization problem is unimodal, since its objective function is
convex and the constraints are linear with respect to all state and control variables.
The unimodal problems are known to have only one local optimum that brings
the objective also to the globally minimum value. Therefore, the properties of
the solution proved in Lemmas 1-3 are not only necessary but also sufficient for
optimality.

The next section determines the necessary and sufficient optimality conditions
for the case of a concave form of the speed-resource functionsfi(ri(t)).

4. Properties of optimal solutions for the concave speed-resource function

The concave speed-resource functions approximated asfi(ri) = ki√ri are consid-
ered in this section. The Hamiltonian in this case is:

H = −1

2

∑
i

ciXi(t)
2+

∑
i

ψX
i (t)(ki

√
ri(t)− di(t))+ ψY

∑
I

i ri(t) ,
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and after the change of variableszi(t) = √ri(t), the problem of the Hamiltonian
maximization takes the following form:

ψY
∑
i

zi(t)
2+

∑
i

ψX
i (t)kizi(t)→ max,

s.t. 06 zi(t) 6
√
bi, and

∑
i

zi(t)
2
6 N(t) .

Figure 2. Optimal regimes: concave speed-resource function case

By classifying the optimal control regimes, we find the same no-resource and
greedy resource usage regimes that are analogous to those proven in Lemma 1 for
the linear statement. No singular regime can now occur, since the Hamiltonian is
no longer linear. Figure 2 shows levels of equal values of the Hamiltonian against
the admissible area of controlszi(t) for the two-product system case. The parabolic
form of the Hamiltonian function with the vertex coordinate:

z∗i (t) = −ψX
i (t)ki/2ψ

Y

causes the following additional regimes:

· zi(t) = z∗i (t), if 0 6 z∗i (t) 6
√
bi and|z∗i (t)| 6

√
N(t) (partial usage regime);

· zi(t) = z∗i (t)
√
N(t)/|z∗i )(t)|, if 0 6 z∗i (t)

√
N(t)/|z∗i (t)| 6

√
bi and|z∗i (t)| >√

N(t) (full usage regime).

For the linear case of the speed-resource function, the necessary conditions of
optimality have been also sufficient. For the concave case, the sufficiency issue
should be given a special consideration.

LEMMA 4 (sufficient optimality conditions).Given problem (2)–(4), (6), (7) and
(9), in order for the solutionri(t) of the problem which satisfies the necessary
optimality conditions to be globally optimal, it is sufficient if:

· functionfi(ri(t)) is concave inri(t), and
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· for everyt , such thatXi(t) > 0 the following inequality is satisfied[∫ t

0

∂fi(ri(τ ))

∂ri
dτ

]2

> −Xi(t)
∫ t

0

∂2fi(ri(τ ))

∂r2
i

dτ . (20)

.
Proof. Note, that all constraints of the problem are linear except for the primal

differential equation (2), while all the cost functions are convex. Thus, to verify
the conditions of the lemma, we have to consider the influence of the nonlinear
equation (2) on the unimodality of the problem. It is accomplished by replacing
the equation (2) with its integral expression:

Xi(t) = Xi(0)+
∫ t

0
(fi(ri(τ ))− di(τ))dτ

into the objective:

1

2

∫ T

0

∑
i

ci

[
X0
i +

∫ t

0
(fi(ri(τ ))− di(τ))dτ

]2

dt.

From the obtained objective, one can readily see that there is no even need to
construct the Hessian matrix in order to verify the convexity of the objective, since
it is simply the sum of independent functions of one variable. Thus, the problem is
unimodal if at every point of time:

1

2

∂

[
X0
i +

∫ t

0
(fi(ri(τ ))− di(t))dτ

]2

∂r2
i

> 0, i = 1,2, . . . , I ,

Taking the derivatives, we finally obtain:

X(t)

∫ t

0

∂2fi(ri(τ ))

∂r2
i

dτ +
[∫ t

0

∂fi(ri(τ ))

∂ri
dτ

]2

> 0. (21)

There are two conditions when the last inequality is trivially satisfied. The first
condition concerns the linearity of the speed-resource function, that has been con-
sidered in the previous section. The second one is derived from the concavity of
functionfi(ri(t)), i.e.,∂2fi(ri(t))/∂r

2
i 6 0. If demands in the system are greater

than or equal to the available production rates in cumulative sense, so thatXi(t) 6

0, the concavity offi(ri(t)) is the sufficient condition. However, if this is not the
case, then inequality (21) must be satisfied as stated in the Lemma. 2

REMARK. If demands in the system are pressing in terms of the available re-
sources (i.e.,Xi(t) = X0

i +
∫ t

0(fi(ri(τ )) − di(τ))dτ 6 0), which is the most
important and complex scheduling case in real-life manufacturing, the sufficient
condition is met by any concave speed-resource function.
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5. Solution methods

Basics of the two time-decomposition methods have been discussed in the previ-
ous section. One method optimizes the Hamiltonian numerically by projection of
the gradient on the set of control constraints. The other utilizes properties of the
optimal solutions for solving the initial-point boundary-value problem (2), (7) and
(10) (Burden and Faires 1989).

Both methods are quite well computationally studied in the literature for di-
verse scheduling problems with different number of differential equations, con-
straints and variables (Kogan and Khmelnitsky 1995, Khmelnitsky, Kogan and
Maimon 1995), and therefore are only briefly discussed here. The advantage of
the projected-gradient method is in its applicability to large-scale systems, while
the global search based on initial-point boundary-value problems is well solvable
(usually by shooting methods) only for relatively small-scale cases. However, large
problems are tackled effectively with the former if a moderate accuracy is required,
while the performance of the latter improves significantly if the missing boundary
values (in our case initial values for the dual variables) can be estimated in advance.
Therefore a combined method can be suggested where the projected-gradient ap-
proach is used to compute not only a fast approximate solution, but also initial
boundary value approximation for the dual variables. Consequently, if the accuracy
of the obtained gradient-based solution is not sufficient, these dual variable values
can be beneficially employed by a global search procedure to elaborate the result
on the basis of analytical Hamiltonian optimization.

PROJECTED-GRADIENT-BASED ALGORITHM

The main idea behind this time-decomposition method and underlying algorithm
suggested here is to locate iteratively all types of the optimal regimes (see Lemmas
1-3) by the gradients (14) projected on the control constraints (3) and (4).

The method involves integration of the primal and dual systems under initial
and terminal boundary conditions respectively in order to find gradients and, thus,
control variations improving the objective on every iteration. Since the terminal
boundary conditionψY (T ) in the presented model is not completely defined for
the dual equation (11), the following lemma is formulated to determine it.

LEMMA 5. Given primal (2)-(4), (6), (7), (9) and dual (3), (4), (10), (12) prob-
lems and a trajectory(ri(t),Xi(t), Y (t)) satisfying all the constraints of the prob-
lems, if a gradient-based method is applied to improve this trajectory on which
Y (T )−M(T ) = 0, then the new terminal boundary condition for the dual differ-
ential equations is determined by the following equation:

· ψY = 1

T |I |
∑
i

∫ T

0

∂fi(ri(t))

∂ri

∫ T

i

ciXi(τ)dτ dt (22)
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· otherwise ifY (T )−M(T ) < 0 thenψY = 0 . (23)

Proof. First, condition (23) is readily obtained from the constraint (9) related
complementary slackness condition of the maximum principle:

(Y (T )−M(T ))ψY = 0 .

Let us now consider the case when constraint (9) is active, i.e. transforms into
equality. Then any small control variation on the subsequent iteration may violate
it, unless the variation of the state variable at the terminal time point is zero:

δY (T ) = 0 . (24)

Integrating differential equation (7) and replacing it withY (T ) in equation (24) we
express the variation in this equation through the corresponding control variations:

δY (T ) =
∫ T

0

∑
i

δri(t) dt = 0

Consequently choosing a smallε for providing the control variation in the direction
of the gradient (14) we obtain:

δY (T ) =
∫ T

0

∑
i

ε

[
ψX
i (t)

∂fi(ri(t))

∂ri
+ ψY

]
dt = 0 ,

Finally, the stated in this lemma terminal dual variable equation (22) is readily
obtained by replacing the dual variables with their integral expressions:

ψX
i (t) = −

∫ T

t

ciXi(τ)dτ

resulting from equation (10). 2

The projected gradient-based algorithm is described as follows:

Step 1. Choose a feasible solution of the problem. For example, controlsri(t) =
0, ∀i meet all the constraints of the problem (2)–(4), (6), (7) and (9).

Step 2. Integrate from the left to the right the primal differential equations (2) and
(7) to determine inventoryXi(t) and resource consumptionY (t) levels for
the given controls.

Step 3. For the obtained inventory levels and controls calculate the objective ac-
cording to equation (6).

Step 4. Calculate the missing terminal condition for the dual equation (11) as
determined in Lemma 5. Integrate from the right to the left the dual
differential equations (10).
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Step 5. Calculate direction of the descentpi(t) by projecting the Hamiltonian
gradients (13) on the constraints (3) and (4) to determine small control
variations as a step( along the calculated direction.

Step 6. Make a step in the direction of the descent:δri(t) = εpi(t).
Step 7. Integrate from the left to the right the primal differential equations (2) and

(7) to determine inventoryXi(t)and resource consumptionY (t) levels for
the newly obtained controls.

Step 8. For the obtained inventory levels and controls calculate the objective (6).
If all of the constraint are not violated and the objective is improved then
go to the next step. Otherwise decrease( and go back to Step 6.

Step 9. Check the standard stop criterion value
∫ T

0

∑
i |pi(t)|dt ; if it is less than a

given tolerance then stop, the solution has been found, otherwise proceed
to step 4.

INITIAL -VALUE -BASED GLOBAL SEARCH ALGORITHM

The algorithm is intended for defining time points of entering and exiting the
optimal regimes analytically formulated in Lemmas 1-3 while simultaneously in-
tegrating the primal (2), (7) and dual (10), (11) differential equations in concurrent
directions.

The algorithm is described as follows:

Step 1. Select arbitrary initial values for the dual variables, for example,ψX
i (0) =

ψY = 0,∀i.
Step 2. Set current point of time to be critical and equal to zero. Define all inter-

vals of time which satisfy Lemmas 2 and 3 and their Corollaries. Assign
left endpoints as the potentially critical moments for entering the singular
regimes. If there are no such moments go to Step 7.

Step 3. Integrate concurrently from the left to the right the primal differential equa-
tions (2), (7) and dual differential equations (10), (11) from the current
critical point up to the nearest moment of entering a singular regime as
defined by Lemmas 2-3 and their Corollaries. Set optimal controls during
the integration up to that moment as prescribed in Lemma 1.

Step 4. Find a moment of exiting the current singular regime which satisfies the
conditions of the subsequent potentially critical moment, i.e., the moment
of entering the subsequent singular regime. If there are no more subsequent
singular regimes on the planning horizon, then this moment is set att , and
the execution proceeds to Step 7.

Step 5. If there is no corresponding (legitimate) moment of exiting of this singular
regime, i.e. the moment of entering it is greater than the found moment of
exiting, then go to the next step, otherwise the singular regime is fixed and
the moment of exiting of it is declared to be the current critical moment.
Go to Step 3.
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Step 6. Merge the current singular regime with the subsequent one. If entire plan-
ning horizon is already covered by the singular regimes, go to Step 7,
otherwise go to Step 4.

Step 7. If a stop criterion of the chosen global optimization method is satisfied with
a given accuracy, the optimal solution has been found. Otherwise, correct
the values ofψX

i (0), ψ
Y with respect to the method so that to minimize

the objective (6). Go to Step 2.

6. Computational example

A solution of a four-product-type scheduling problem computed with the combined
(projected-gradient and global random search) time-decomposition method is pre-
sented here. The solution illustrates the optimal behavior of the resource usage
rates and the corresponding inventory (activity) levels when the square root case
of the speed-resource usage functions is employed. The demands given and the
production parameters selected for the problem are summarized in Table 1, where
c+i is the holding cost of product type I, i.e. whenXi(t) > 0, c−i is the backlogging
cost(Xi(t) < 0).

The problem is solved on the planning horizonT of 25 time units, where the
maximal resource usageN(t) is equal to 8.37 product units per time unit and the
total resource consumptionM(T ) is allowed at 198.6 product units. The initial
inventory levelsX0

i as well as the initial resource consumptionY 0
i are set at zero.

Figure 3 shows the obtained allocation of the doubly constrained resource to
the four products along the planning horizon. The found peaks on the optimal
trajectory illustrate how the constrained resource is scheduled in response to the
changing in time demand conditions. Due to the pressing demand, the resource is
found to be fully consumed, while full usage of it is observed only on a part of the
planning horizon.

Table 1. Demand and system parameters

i Demand System parameters

1-5 6-10 11-15 16-20 21-25 k b c+ c−

1 1 1 2 4 2 1.3 4.2 0.1 10

2 2 0 1 2 1 1.5 1.1 0.2 13

3 2 1 3 0 3 1.2 2.3 0.08 11

4 2 1 3 4 2 1.5 4.9 0.1 8
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Figure 3. Evolution of the resource usage, consumption and inventory (activity) levels.

7. Concluding remarks

Consideration of doubly constrained resources is important from both theoretical
and practical standpoints in aggregate production and project management. It is
also of special interest due to many real-life applications where considering only
either resource constraint is inaccurate and may result in improper managerial
decision to be made. The continuous time approach to scheduling resources is
introduced in the paper in a form of the optimal control problem. Based on the
maximum principle, optimal resource usage regimes are derived for linear and
concave speed-resource functions. As a result, two time-decomposition methods
are developed to solve the problem with one of them maximizing the Hamiltonian
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Table 2. Deviation of objective function values relative to the 20% accu-
racy GAMS solutions, in percents

Number Projected-gradient Global search Combined method

of product Computation time (min)

types 4 8 4 8 4 8

5 98 110 80 87 105 117

10 95 105 68 74 101 111

15 90 98 58 63 96 106

20 82 89 50 55 91 100

analytically and the other doing this numerically. Sufficient conditions for the
methods to provide a global optimal solution are also discussed. As shown in
Table 2, the best computational results are obtained when combining the methods.
Moreover, in almost all experiments, the combined method computed in minutes,
improved the objective computed within hours by the Non-Linear Programming
optimization GAMS solver set up with 20% accuracy. Table 2 gives the average
deviation of the objective obtained on a PC-486 by the three methods relative to
that of the GAMS’ solution.
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